
Product and Release Planning Practices for
Extreme Programming

Gert van Valkenhoef1,2, Tommi Tervonen1, Bert de Brock1, and Douwe
Postmus2

1 Faculty of Economics and Business, University of Groningen, The Netherlands
{g.h.m.van.valkenhoef,t.p.tervonen,e.o.de.brock}@rug.nl

2 Dep. of Epidemiology, University Medical Center Groningen, The Netherlands
d.postmus@epi.umcg.nl

Summary. Extreme Programming (XP) is an agile software develop-
ment methodology defined through a set of practices and values. Al-
though the value of XP is well-established through various real-life case
studies, it lacks practices for project management. In order to enable XP
for larger projects, we provide the rolling forecast practice to support
product planning, and an optimization model to assist in release plan-
ning. We briefly evaluate the new practices with a real-life case study.

Key words: Planning, extreme programming, integer programming

1 Introduction

Extreme Programming (XP) is one of the most “agile” software development
methodologies. Unlike plan-driven methodologies (e.g. waterfall) that define soft-
ware development as a process, XP defines it through values and practices proven
to work well together in real-life software development [1, 2]. A good project
management process and strong customer involvement are critical to project
success in XP [3]. Although XP provides a consistent set of practices, it almost
completely lacks practices for planning [4]. Therefore, although XP has been
reported to be tailorable for large-scale projects [5], it is generally considered
more suitable for small projects. Moreover, the ‘on-site customer’ practice [1] is
often hard to implement due to organizational or time constraints [6]. The XP
customer is consistently under significantly more pressure than the developers or
other participants in the project [7]. This causes the following problems (which
become worse as projects get larger):

1. Lack of management context: XP does not address the larger context in
which release planning takes place, or the long term project goals [4]. This
means that the customer or the developers may loose track of the overall
purpose of the system and consequently make sub-optimal planning deci-
sions.

2. User story overload: the number of user stories to be considered in release
planning can make the planning process too demanding for the customer.



2 G. van Valkenhoef et al.

3. Prioritization stress: the responsibility of prioritizing user stories may cause
stress for the customer, even for a small number of stories. It is difficult to
foresee the consequences and adequacy of the prioritization [7], and it is un-
clear whether the customer perceives business value in constantly managing
the development priorities [8].

To address these problems, this paper proposes two new planning practices for
XP. First, we assist in product planning with the new practice of rolling forecasts
(Section 2). This practice helps to provide management context often lacking in
XP (Problem 1 above). Second, we introduce an automated planning aid that
can be used during release planning to reduce the customer workload by gener-
ating a suggested plan that satisfies simultaneously the constraints imposed by
the customer and the limited development resources (Section 3). This addresses
issues 2 and 3 identified above. After introducing the practices, we demonstrate
their use in a real-life study (Section 4), before giving concluding remarks (Sec-
tion 5).

2 Rolling Forecast for Product Planning

Expectation management is often the key difference between failed and succesful
software projects [9]. XP originally proposes the ‘system metaphor’ practice for
expectation management [1]. However, in practice, ‘system metaphor’ is difficult
to apply and not useful, and is therefore often not implemented [6]. The ‘system
metaphor’ has since been removed from XP [2], and there is no replacement
practice addressing expectation management. The lack of an expectation man-
agement practice that is coherent with the rest of the methodology can cause
additional project risks, especially if the customer is not constantly available
on-site, as is often the case (see [6]).

Product planning should provide the context in which the release planning
takes place [10]. In each release, before stories are elicited, the customers should
have a rough idea of the current state of the system and the direction of de-
velopment. This is promoted in XP by having the customer test and accept
implemented stories and by frequently giving system demonstrations. However,
it is unclear how a shared vision of the direction of future development can
be established, especially when the customer does not clearly know what (s)he
wants. As a consequence, an upfront rigid planning of the whole product in con-
crete terms is often almost impossible and can also become counter productive
(‘analysis paralysis’).

To support product planning, we introduce the practice rolling forecast. At
project inception, an overview of the product goals is drawn up by the customer
together with the project manager. The goals should be stated in a functional
format but in such a way that they cannot readily be broken into themes with-
out further analysis and elicitation. The goals serve to provide a shared vision
of the system and to form a basis for user story elicitation, but they are not
requirements per se. It is advisable to re-evaluate the overall goals periodically,
e.g. after every fourth release.



Product and Release Planning Practices for Extreme Programming 3

After defining the product goals, a theme forecast is created by the customer,
project manager and a development team representative (e.g., an analyst or
technical manager). A theme forecast consists of a set of themes, their likely
implementation order, and a prediction of which themes will be realized in the
coming two or three releases. The theme forecast can be adapted in prepara-
tion of every release planning (before story elicitation). Thus, a rolling forecast
manages the expectations about the software by iteratively developing theme
forecasts based on overall product goals. Then, in release planning, the theme
forecast is taken into account when deciding on the themes and stories for the
next release, while iteration planning takes into account (and adjusts) the release
plan in choosing the stories and identifying the tasks for the next iteration, i.e.,
the normal agile planning practices are applicable at the release and iteration
levels [10, 11].

3 Supporting Release Planning Model

Our planning model is aimed to support release planning. The developers elicit
stories from the customer and ask him/her to evaluate them with respect to their
business value on an interval scale, e.g. 1–5. Then the developers evaluate the sto-
ries’ implementation complexity in story points. The model provides a planning
aid by maximizing the implemented business value, taking into account con-
straints on implementation complexity and precedence relations. A precedence
relation is interpreted as a story not having value unless another (preceding)
story is implemented. Moreover, in XP, related stories are often grouped into
themes that represent larger pieces of related user functionality, and synergy ef-
fects occur when all stories within a theme are implemented [2]. We model such
effects by awarding extra value to a theme of stories if they are implemented
together in a single release. Note that not all stories need to belong to a theme,
and that one story can belong to more than one theme. We don’t allow themes to
span multiple releases in order to prevent the supporting planning model being
used for making longer term plans, that might lower the overall agility of the
XP development process. Longer-term product goals should instead be handled
with the other proposed practice, rolling forecast.

Our model assumes adherence to the standard best practices regarding story
and theme sizes. Stories should be small enough that they can easily be imple-
mented in a single iteration, and themes in a single release. Moreover, a theme
should consist of the minimal set of stories required to achieve the aforemen-
tioned synergy effect. Not adhering to these guidelines may lead to inappropriate
results from the model.

The story selection can be formulated as a knapsack problem (the complete
integer programming formulation is given in Model 1). Let us denote by n the
number of uncompleted stories. Each story i has a business value of bi and
implementation complexity of ci story points. The total amount of story points
that can be implemented during a release is denoted by p. The decision problem
is to select the most valuable subset of stories to implement in a release (Model 1:



4 G. van Valkenhoef et al.

Model 1 The optimization model as a side-constrained knapsack problem.
1. max b1x1 + . . . + bn+mxn+m

2. s.t. c1x1 + . . . + cn+mxn+m ≤ p
3. xj − xi ≤ 0 for all i, j where xi � xj

4.
∑n

i=1
aijxi − sjxn+j ≥ 0 for j = n + 1, . . . , n + m

5.
∑n

i=1
aijxi − xn+j ≤ sj − 1 for j = n + 1, . . . , n + m

6. x1, . . . , xn+m ∈ {0, 1}.

1), subject to a budget constraint on the maximum implementation complexity
(Model 1: 2). For each story i ∈ {1, . . . , n}, let xi = 1 if story i is selected and
xi = 0 otherwise (Model 1: 6). Precedence of story i to story j is denoted by
xi � xj and can be incorporated into the optimization model by adding the
following constraint: xj − xi ≤ 0 (Model 1: 3).

To model themes, let m be the number of themes and let sj (j ∈ {1, . . . ,m})
be the number of stories within theme j. Theme j can be included in the model
by introducing a dummy story (n + j), such that xn+j = 1 if and only if all
stories within theme j are implemented (Model 1: 4–5). The business value bn+j

associated with story (n + j) represents the additional value that is awarded
when all stories within theme j are implemented; its implementation complexity
cn+j is set equal to zero.

We implemented the supporting release planning model using R (http://
www.r-project.org) and lp solve (http://lpsolve.sourceforge.net). Our
implementation is freely available online (http://github.com/gertvv/xpplan).

4 Real-Life Example

We are involved in a research project with external customers that expect us to
develop software artifacts for the application domain of pharmacological decision
support. Our development environment consists of 2 teams working part-time.
In the following, we detail how we used the rolling forecast practice and our
planning model in the development of ADDIS (see http://drugis.org).

Rolling Forecast. Although we didn’t have clear requirements, we couldn’t wait
until the research results were present. In order to generate an overall view on
the project and the first theme forecast, we interviewed the external customers
of the research project. The initial forecast (Figure 1, top) was constructed
considering 16 goals, such as “the system should provide drug efficacy and safety
information”. The theme forecast consists of a detailed set of themes for the
next release(s) and a more global set of (likely) themes for the more distant
releases. The forecast helped us to elicit stories in release planning meetings with
the main external customer, who also chose the stories to implement. Figure 1
shows how our mutual understanding of the project evolved during the first half-
year of development (only the most important themes are shown). We initially
decided to focus on ‘benefit risk’ as a long-term goal. This defined our priorities



Product and Release Planning Practices for Extreme Programming 5

Fig. 1. The theme forecast for the beginning of the project (top) and the updated
forecast (bottom) before release 3 (R3). A solid arrow from A to B indicates A has
priority over B. The actually implemented themes from release 1 (R1) and 2 (R2) are
shown, as well as the expected themes for release 3 (dotted lines). The dashed arrow
indicates a high-level theme being refined as more information became available.

for the first two releases. We knew that to actually implement ‘benefit-risk’,
research input would be needed. As these results became available only during
the second release, the forecast was refined. Simultaneously, we were able to
identify additional themes that also support our long-term goals, as well as two
themes (’no empty screens’ and ’linkage’) that generate interest for our software
through usability.

Planning Model. We did the first release (ADDIS 0.2) as a burn-in for velocity
estimation and to create an initial end-to-end working system (also known as
a ‘walking skeleton’, see http://alistair.cockburn.us/Walking+skeleton).
Therefore we didn’t estimate story business values while planning the first re-
lease. During the second release (ADDIS 0.4), we estimated story business values
(scale: 1-5), story complexities (scale: 1,2,3,5,8), technical precedence relations
(none were identified) and themes. In this release, we could identify 3 themes
as being the most important. After the release was completed, we ran our sup-
porting optimization model for release planning. We tested the sensitivity of the
optimization model and differences between the model’s solution and the stories
we actually implemented by varying the theme value from 0 to 99. The results
didn’t differ much from our manually planned implementation order and the
model showed to be robust with respect to changes in theme value: the only
differences emerged when the theme value changed from 0 to 1 and from 10 to
11. When theme values varied between 1− 10 the same two out of three themes
were included in the optimal solution whereas with theme value > 10 all three
themes were included.



6 G. van Valkenhoef et al.

5 Conclusions

Lack of management context, user story overload, and prioritization stress cause
high workload for the customer and hinder scalability of XP to larger projects.
To overcome these limitations, we propose two new practices: rolling forecast for
product planning and release planning support through an optimization model.
We evaluated the applicability of our new practices in a software development
project and found them useful. However, we do not have sufficient evidence to
make claims about their suitability for projects with different customer pro-
files, numbers of developers, or levels of developer competency. Our ongoing
development project cannot address these questions, and additional appropriate
empirical studies should be initiated. Our future research will investigate how
business value should be estimated for themes, and how uncertainty can be made
explicit in the planning process.

Acknowledgements This study was partly supported by the Escher project
(T6-202), which is a project of the Dutch Top Institute Pharma.

References

1. Beck, K.: Extreme Programming Explained. 1st edn. Addison-Wesley (1999)
2. Beck, K.: Extreme Programming Explained. 2nd edn. Addison-Wesley (2005)
3. Chow, T., Cao, D.B.: A survey study of critical success factors in agile software

projects. Journal of Systems and Software 81(6) (2008) 961–971
4. Abrahamsson, P., Warsta, J., Siponen, M., Ronkainen, J.: New directions on ag-

ile methods: a comparative analysis. In: IEEE Proceedings of the International
Conference on Software Engineering, Portland, Oregon, USA (2003) 244–254

5. Cao, L., Mohan, K., Xu, P.: How extreme does extreme programming have to be?
adapting XP practices to large-scale projects. In: Proceedings of the 37th Hawaii
International Conference on System Sciences, Waikoloa, Hawaii (2004)

6. Rumpe, B., Schröder, A.: Quantitative survey on extreme programming projects.
In: Proceedings of the Third International Conference on Extreme Programming
and Flexible Processes in Software Engineering, Sardinia, Italy (2002) 26–30

7. Martin, A., Biddle, R., Noble, J.: The XP customer role in practice: three studies.
In: Agile Development Conference (ADC2004), Salt Lake City, Utah, USA (2004)

8. Grisham, P.S., Perry, D.E.: Customer relationships and extreme programming.
In: HSSE ’05: Proceedings of the 2005 workshop on Human and social factors of
software engineering, New York, NY, USA, ACM (2005) 1–6

9. Boehm, B., Turner, R.: Balancing agility and discipline: a guide to the perplexed.
Addison Wesley (2003)

10. Cohn, M.: Agile Estimating and Planning. Robert C. Martin Series. Prentice Hall
PTR (2005)

11. Beck, K., Fowler, M.: Planning Extreme Programming. Addison-Wesley (2001)


